Pharmacokinetic and Pupillometry Outcomes from a Phase 1 Placebo-controlled Trial to Compare the Effects of Buprenorphine Buccal Film and Oral Oxycodone Hydrochloride

Lynn Webster, MD1, Jacqueline Cater, PhD2; Thomas Smith, MD3
1Center for U.S. Policy, Salt Lake City, UT, USA; 2ICON plc, Philadelphia, PA, USA; 3BioDelivery Sciences International, Inc., Raleigh, NC, USA

Introduction

• The opioid crisis has led to increased concern about the safety of opioids administered for chronic pain, especially regarding abuse and respiratory depression associated with death.

• As a partial opioid receptor agonist, buprenorphine has unique properties that distinguish it from full µ opioid receptor agonists.

• Buprenorphine is classified as a Schedule III drug because it has a lower abuse potential than full µ opioid receptor agonists.

• Buprenorphine buccal film (BELBUCA®) is approved by the US Food and Drug Administration for use in patients with pain severe enough to require daily, around-the-clock, long-term opioid treatment and for whom alternate treatment options are inadequate.

• In this phase 1 study, evaluation of the primary endpoint revealed immediate-release oxycodone administration led to a significant, dose-dependent decrease in respiratory drive, whereas BELBUCA did not (ClinicalTrials.gov Identifier: NCT03996694).

• The pharmacokinetic and pupillometry outcomes presented here were chosen because of their relevance for respiratory safety and potential risk for abuse.

• As expected, time to Cmax was higher for immediate-release oxycodone than BBF.

• Significant miosis occurred faster for immediate-release oxycodone than BBF.

Methods

Population and Treatments
• The study included healthy individuals who self-identified as recreational opioid users and who were not dependent on opioids as confirmed by a Naloxone Challenge Test on day –1.

• Study treatments (Figure 1):
 – Placebo
 – 30 µg, 100 µg, and 300 µg BBF
 – 60 mg and 60 mg oral immediate-release oxycodone

Study Design
• For the 2 drugs, the choice was based on calculations for equipotency.

• In a randomized, double-blind, double-dummy, 6-period, 6-period, placebo-controlled crossover design, 17 study participants were performed between treatments (Figure 1).

• This study design was chosen to minimize variability by allowing each subject to serve as their own control.

• An institutional review board approved the study protocol.

Assessments
• Respiratory drive was evaluated by ventilatory response to hypercapnia.

• Blood samples were collected for pharmacokinetic analysis.

• Pupil diameter was measured with standardized pupillometry via the NeuroOptics VPH-200 pupillometer.

• An institutional review board approved the study protocol.

Results

• A total of 19 subjects were enrolled; 15 subjects completed the study (Table 1).

Table 1. Subject Demographics and Disposition

<table>
<thead>
<tr>
<th>Subjects, No.</th>
<th>Enrolled</th>
<th>Partial completers*</th>
<th>Completers</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Age, mean (SD), y</td>
<td>33.4 (4.8)</td>
<td>32.3 (4.8)</td>
<td>32.9 (4.4)</td>
</tr>
<tr>
<td>Male, No. (%)</td>
<td>16 (97.7)</td>
<td>15 (96.7)</td>
<td>14 (92.9)</td>
</tr>
<tr>
<td>Race, No. (%)</td>
<td>18 (94.7)</td>
<td>14 (86.7)</td>
<td>13 (86.7)</td>
</tr>
<tr>
<td>White</td>
<td>14 (77.8)</td>
<td>13 (83.3)</td>
<td>12 (80.0)</td>
</tr>
<tr>
<td>Black or African Americans</td>
<td>2 (11.1)</td>
<td>2 (12.5)</td>
<td>1 (6.7)</td>
</tr>
<tr>
<td>Asian</td>
<td>2 (11.1)</td>
<td>1 (6.3)</td>
<td>1 (6.3)</td>
</tr>
<tr>
<td>American Indian or Alaska Native</td>
<td>2 (11.1)</td>
<td>1 (6.3)</td>
<td>1 (6.3)</td>
</tr>
<tr>
<td>Weight, mean (SD), kg</td>
<td>76.5 (15.9)</td>
<td>79.3 (16.2)</td>
<td>80.6 (16.7)</td>
</tr>
<tr>
<td>Height, mean (SD), cm</td>
<td>171.4 (8.7)</td>
<td>174.3 (8.7)</td>
<td>174.3 (8.7)</td>
</tr>
<tr>
<td>BMI, mean (SD), kg/m²</td>
<td>24.9 (3.7)</td>
<td>25.1 (3.3)</td>
<td>25.3 (3.6)</td>
</tr>
</tbody>
</table>

*Subjects who completed ≥ 80% of study treatment.

• Mean AQ (Cmax) ranged from 0.4 to 3.2 for BBF and 6.7 to 11.0 for immediate-release oxycodone (Table 2).

Table 2. Plasma Pharmacokinetic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>BBF (n=17)</th>
<th>Oral IR oxycodone (n=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmax, ng/mL</td>
<td>3.4 (0.2)</td>
<td>6.5 (1.9)</td>
</tr>
<tr>
<td>Tmax, median (min, max)</td>
<td>2.2 (1.1, 2.3)</td>
<td>2.2 (1.1, 2.3)</td>
</tr>
<tr>
<td>AUC, Cmax, (ng × min)/mL</td>
<td>0.0 (3.9)</td>
<td>0.0 (3.9)</td>
</tr>
</tbody>
</table>

*Analyses were performed using a linear mixed-effects model with treatment, period, and sequence as fixed effects and time point as a random effect.

• Significant miosis was observed later after BBF administration, compared with immediate-release oxycodone (Figure 2).

Conclusions

• The secondary outcomes of this study showed that pharmacokinetics of immediate-release oxycodone and BBF differed significantly in recreational opioid users.

• Cmax was highest, Tmax was faster, and AUC was higher for immediate-release oxycodone than for estimated equianalgesic doses of BBF.

• Significant miosis occurred faster for immediate-release oxycodone than BBF.

• Results from this study suggest that a single dose of BBF may have lower risks of drug liking and abuse compared with a single dose of the full µ-receptor agonist, immediate-release oxycodone.

References

Author Disclosures

All authors disclose no conflict of interest.

Acknowledgment and Funding

This study was funded by BioDelivery Sciences International, Inc. Professors writing and editorial support provided by Vicky Peck, PhD, RN, and Matt Schramm, MD, under the direction of the authors who are licensed to BioDelivery Sciences International, Inc.